Osłony ochronne na przewody

BMW

   Dzisiaj zacznę dość nietypowo. Wiadomo, że płyn do spryskiwaczy zawsze się kończy w najmniej oczekiwanym momencie, zajeżdżasz na stację kupujesz, szybko dolewasz i jedziesz dalej. Prawie zawsze trochę płynu rozlewa się na sąsiadujące z wlewem elementy silnika, jakby przewody nie były zabezpieczone przed szkodliwymi czynnikami to mogłyby się uszkodzić w kontakcie z chemią. Ten fakt sprawił, że moją uwagę zwróciły piękne osłony na przewody (m.in. peszle, plecionki i termokurcze). Ta sytuacja zainspirowała mnie do napisania tego artykułu. Na zdjęciu powyżej silnik BMW, a  poniżej silnik Toyoty Rav4 – zobacz jak bajeczne wykorzystuje się osłonki na przewody, jak niezbędne są w przemyśle motoryzacyjnym i nie tylko w tym przemyśle.

toyota rav

   W zeszłym roku we wrześniu 2017 byłem na targach kolejowych TRAKO 2017 (targi odbywają się co 2 lata w Gdańsku) i prezentowane są na nich różnego rodzaju pojazdy szynowe. W Niemczech tego typu targi nazywają się InnoTrans, które w tym roku odbywają się między 18-21 września 2018. Widziałem tam wagony pasażerskie, drezyny i lokomotywy – wszystko oglądałem od strony technicznej – takie lekkie zboczenie zawodowe, bo zaglądałem pod maskę i w różne zakamarki żeby zobaczyć jak to jest zrobione i wygląda od nowości.

    Szczerze mówiąc wcześniej nie zwracałem zupełnie uwagi na takie wydarzenia, ale na te konkretne poszedłem. Po co stosuję się osłony na przewody? A no po to żeby zabezpieczyć to co w nich jest. Na zdjęciach widać, że osłony na przewody są wykorzystywane głównie do ochrony wiązek kablowych i przewodów, zabezpieczając je w ten sposób przed uszkodzeniami mechanicznymi. Ochrona wiązek kablowych jest niezbędna w miejscach, w których bardzo łatwo mogą ulec uszkodzeniom powstałym w skutek:

🔷 trudnych warunków środowiskowych;
🔷 bezpośredniego oddziaływania środków chemicznych i nie mam na myśli smaru;
🔷 wysokiej temperatury;
🔷 pożaru.

   Chcąc dobrać właściwą osłonę do przewodów trzeba znać i zwrócić uwagę na czynniki szkodliwe wpływające negatywnie na powłokę kabla. W niektórych przypadkach odpowiednie mogą się okazać materiały o zwiększonej odporności na ścieranie, rozciąganie, w innych samo gasnące, które wytwarzają mało dymu i nie podtrzymują płomienia podczas pożaru. Są też takie, które muszą zabezpieczać kable przed zanieczyszczeniami, wilgocią i obciążeniami termicznymi. Wybierając osłonę należy również pamiętać o tym żeby jej montaż nie zwiększał ogólnego kosztu instalacji, bo jednak czas to pieniądz.

spiral wrap IT

  Osłony zabezpieczające przewody przed ścieraniem gwarantują łatwy i ekonomiczny sposób izolowania, zabezpieczania i kodowania kolorami komponentów oraz kabli.

   Na rynku dostępne są różne często powielane modele tych osłon. Firma Panduit chcąc wyróżnić się na tle konkurencji posiada szeroką gamę rozmiarów i materiałów o specyficznych właściwościach, ale też mają swoje opatentowane osłony, które są przez inne firmy produkowane na wzór tych z firmy Panduit. Spełniają one ogólnoświatowe standardy zastosowań zewnętrznych i wewnętrznych. Zachowują wysoką jakość produktów, bo wykorzystują wytrzymałe tworzywa kapitalnie nadające się do ochrony przewodów i wiązek. Wykwalifikowany personel (większość to ludzie z tytułem doktora) działu R&D w firmie Panduit projektuje i wytwarza swoje towary zgodnie z obowiązującymi normami jakości m.in.: certyfikatem UL94, certyfikatem militarnym (MS21266), certyfikatem ISO9001 oraz certyfikatami lotniczymi. Poniżej poszczególne modele osłon:

  • osłona rozszczepiona Pan-Wrap™ (ang. Split Harness Wrap) – opatentowany wzór szczelin (patent), które zwiększają elastyczność i odporność na ścieranie. W sklepie MK Elektronik dostępne na metry (link).

ladna oslonka

  • osłona spiralna (ang. Spiral Wrap) – wielokrotnego użytku, chronią przewody, największa różnorodność kolorów, tworzyw i rozmiarów, dostosowują się w ten sposób do ekstremalnych światowych wymagań. W sklepie MK Elektronik dostępne na metry (link).

spiral wrap1a

  • osłona krawędziowa (ang. Grommet Edging) – chroni przewody przed uszkodzeniami spowodowanymi przez ostre krawędzie. Sklep MK Elektronik (link).

ge85-C

  • rury karbowane CLT (ang. Corrugated Loom Tubing) – odporne na zgniatanie, uderzenia, ścieranie zmniejszając w ten sposób ryzyko uszkodzenia wiązek kablowych oraz przewodów. Cały fenomen w tym rodzaju osłon polega na tym, że mają szczelinę wzdłuż przekroju i brak ostrych krawędzi zwiększające komfort pracy. Sklep MK Elektronik (link).

Corrugated Loom Tubing

  • osłona pleciona lub tkana (ang. Pan-Wrap Braided Expandable Sleeving) rozszerzalny rękaw zaciskający w sobie przewód uniemożliwiając przemieszczanie się przewodu wewnątrz osłony. Bardzo lekka konstrukcja i trwała ochrona z elastycznym, otwartym przewiewnym splotem, któremu nie jest straszne ciepło ani wilgotność. Sklep MK Elektronik (link).

plecionka3

  • trójnik na zatrzaski łączący rury karbowane CLT osłaniające wiązkę kablową (ang. Corrugated Loom Tubing Fittings). Sklep MK Elektronik (link).

narozna1

  • osłona termokurczliwa (ang. Heat Shrink) dostępne są w wielu różnych kolorach, tworzywach i rozmiarach dostosowując się w ten sposób do rygorystycznych warunków. Broszura z właściwościami (link). Sklep MK Elektronik (link).

HSTT09-YK1

    Konstrukcja wiązki kablowej tworzonej na stole montażowym też wymaga wielu różnych typów osłonek na przewody, m.in. spiralne, karbowane czy plecione. W moim poprzednim artykule dotyczącym systemu QuickBuild umieściłem zdjęcia takie jak te poniżej z przykładowym rozmieszczeniem osłonek na przewody w wiązce kablowej.

WP_20180711_011

quickbuild

    W grupie Pan-Way Above Floor Raceway z firmy Panduit dostępne są również listwy przypodłogowe stosowane do ochrony i ukrywania przewodów sieciowych, światłowodów i kabli zasilających. Długość: 1.83m (6ft). Listwy dostępne są w trzech kolorach: czarnym (AFR4BCBL6), grafitowym (AFR4BCOS6) i białym (AFR4BCIW6). Akcesoria do listew: łącznik do osłony (AFR4CC), zakończenie (AFR4EC), narożnik (AFR4RA), wyjście z listwy po ścianie na listwę z grupy T70 (AFR4TRT70).

Above Floor Raceway and Fittings

 

 

 

Reklamy

Tworzywo do zadań specjalnych – PEEK

 Wiesz czym wyróżnia się firma Panduit na tle konkurencji? Uwierz mi, że nie masz pojęcia jaka jest niezwykła. Ma wiele modyfikowanych tworzyw sztucznych, z których wykonane są niektóre towary. W następnych artykułach będą się pojawiać kolejne przykłady. Ale to nic. Czytaj dalej.
 Stosowanie odpowiednich materiałów zwiększa długotrwałość stosowania, m.in. odporność na wysokie temperatury i trudne warunki chemiczne co przystosowuje materiał do trwałego działania. Jednym z wielu tworzyw sztucznych występujących w firmie Panduit jest niesamowity PEEKPoliEteroEteroKeton (ang. PolyEtherEtherKetone).
hardcore
Dlaczego PEEK jest tak hardcorowy?
  Tworzywo PEEK dzieli się na 3 typy materiału (informacja z wojskowej specyfikacji MIL-P-46183):
  • Typ Iniewzmocnione tworzywo sztuczne – nic nadzwyczajnego, prawda?
  • Typ II – plastik wzmocniony włóknem szklanym (GFRP, ang. Glass Fiber Reinforced Plastic). Najciekawsze właściwości tego typu to: odporność na słoną wodę, brak wpływu na kwaśne deszcze, sole i większość chemikaliów dodatkowo badania wykazują brak utraty właściwości laminatu po 30 latach.
  • Typ III – kompozyty polimerowe (inaczej plastik) wzmocnione włóknem węglowym (CFRP, ang. Carbon Fiber Reinforced Plastic) – w polimerach wzmocnionych włóknem węglowym plastik jest najczęściej epoksydowy, ale czasami stosuje się inne polimery, takie jak poliester, ester winylowy lub nylon, aby związać ze sobą wzmocnienia. Kompozyt (materiał o strukturze niejednorodnej, złożony z dwóch lub więcej komponentów) może zawierać inne włókna, takie jak kevlar, aluminium lub włókna szklane, a także włókno węglowe, które zapewnia wytrzymałość. Wzmocnienie CFRP daje wytrzymałość i sztywność. Właściwości CFRP zależą od rozmieszczenia włókna węglowego i proporcji włókien węglowych w stosunku do polimeru. Na właściwości końcowego produktu CFRP może również wpływać rodzaj dodatków wprowadzanych do matrycy wiążącej (żywicy epoksydowej). Najczęstszym dodatkiem jest krzemionka, ale można stosować inne dodatki, takie jak gumowe i węglowe nanorurki. Wzmocniony włóknem węglowym polimer ma najlepszy stosunek wytrzymałości do masy wszystkich materiałów budowlanych. Jest to udoskonalenie tworzywa sztucznego wzmocnionego włóknem szklanym, chociaż znacznie droższe. Chociaż mogą być drogie w produkcji, CFRP są powszechnie stosowane wszędzie tam, gdzie wymagany jest wysoki stosunek wytrzymałości do wagi i sztywność.

spaceX

  Dlatego łatwo możesz zrozumieć, dlaczego PEEK stosowany jest jako tworzywo do zadań specjalnych. Jego modyfikacja spowodowała:
  • doskonałą wytrzymałość mechaniczną (dot. rozciągania) nawet przy temperaturze 260°C (500°F), materiał jest termoplastyczny (w określonej temperaturze i ciśnieniu zaczyna mieć własności lepkiego płynu).
  • niski współczynnik tarcia.
  • ekstremalną temperaturę pracy, która wynosi: od -60°C (-76°F) do 260°C (500°F).
  • właściwości bezhalogenowe (co oznacza bezhalogenowy) – wartość współczynnika palności, najwyższa z możliwych w normie UL94: V-0 (artykuł dotyczący certyfikatu UL94), wytwarza niski poziom dymu i toksyczności po oparzeniu tym materiałem;
  • minimalną temperaturę topnienia 334°C (633°F);
  • doskonałą odporność chemiczną – materiał jest semikrystaliczny (charakteryzujący się bardzo dobrą odpornością na prawie wszystkie organiczne i nieorganiczne chemikalia);
  • wyjątkową odporność na wysokie poziomy promieniowania gamma X oraz na hydrolizę – tworzywo może być sterylizowane parą wodną, tlenkiem etylenu i promieniowaniem gamma. Może być stosowane pod wodą.
  Ogólnie te tworzywo przyczynia się do poprawy bezpieczeństwa w miejscu pracy.

Zastosowania

  Zadziwiające właściwości umożliwiają stosowanie tworzywa wielu różnych przemysłach. Towary wykonane z PEEK mogą być stosowane w szerokim spektrum obszarów wymagających cienkich przekrojów lub długich długości. Zapewniając tym samym wysoką wytrzymałość, sztywność oraz dobrą ciągliwość. Pod względem właściwości nadaje się do stosowania w przemyśle:
  • naftowym;
  • gazowy;
  • motoryzacyjnym;
  • lotniczym.
gas_oil
  Chemicznie odporny materiał na agresywne środowiska, odpowiedni do sterylizacji w zastosowaniach:
  • medycznych;
  • elektrowniach atomowych;
  • przy kontakcie z żywności (zgodność z normami Agencji Żywności i Leków FDA ang. Food and Drug Administration);
  • piece próżniowe w optyce.
elektrownia atomowa
  Dzięki swoim właściwościom materiał najczęściej stosowany jest w:
  • laboratoriach;
  • przemyśle farmaceutycznym;
  • spożywczym;
  • motoryzacyjnym;
  • lotniczym.

 laboratorium

Gdzie możesz znaleźć tworzywo PEEK w firmie Panduit

 Tak zaawansowane tworzywo, firma Panduit stosuje przede wszystkim w jednoczęściowych opaskach kablowych z grupy Pan-Ty, które występują w trzech długościach: PLT1M-C71 (99.0mm), PLT1.5M-C71 (147.0mm) oraz PLT2S-C71 (188.0mm). Symbol C71 odpowiada za tworzywo PEEK. Opaski w zależności od rozmiaru współpracują z narzędziami instalacyjnymi takimi jak: GTS-E, GS2B-E, GTH-E, GS4H-E, itp. (artykuł dot. narzędzi instalacyjnych do opasek z tworzyw sztucznych). Standardowa ilość w opakowaniu 100szt. Dokumentacja techniczna.

peek1

  Oraz w uchwytach stosowanych z w/w opaskami, które są idealne do stosowania w wysokich temperaturach i trudnych warunkach chemicznych. Dostępny model uchwytów ma symbol TM2S8-C71. Obsługiwane przekroje opasek: Miniature, Intermediate, Standard. Standardowa ilość w opakowaniu 100szt. Dokumentacja techniczna.

uchwyt PEEK
Przydatne linki:
  • Strona MK Elektronik opasek PLT1M-C71 (link);
  • Strona MK Elektronik uchwytu TM2S8-C71 (link).

Narzędzia instalacyjne do opasek zaciskowych z tworzyw sztucznych

   Na obrazku do artykułu widzisz opaskę zaciskaną za pomocą narzędzia. Z pewnością miałeś styczność z opaską zaciskową najczęściej jednoczęściowa konstrukcja, potocznie zwana trytytką (ang. zip-zap), nazywaną w przeróżny sposób, ale każdy doskonale wie czym jest. Wykonane są z różnych tworzyw sztucznych najczęściej nylonu 6.6 tak też jest w firmie Panduit. Opaski występują w różnych przekrojach, są: bardzo małe (ang. Subminiature), małe (ang. Miniature), średnie (ang. Intermediate), standardowe (ang. Standard), bardzo standardowe (ang. Heavy Standard), lekki-ciężki (ang. Light-Heavy) [oksymoron, nie wiem jak to przetłumaczyć], duże (ang. Heavy), bardzo duże (ang. Extra-Heavy)).
opaski

   W zakładach produkcyjnych, które zużywają średnio 50 tys. opasek rocznie takie firmy potrzebują narzędzi, które przyśpieszą pracę i zmniejszą ewentualne nieprzewidziane przestoje. Nie jest tajemnicą, że narzędzia są szybsze od człowieka, ponieważ za jednym razem robią dwie czynności (zaciskają i odcinają niepotrzebną część po zaciśnięciu opaski), dlatego roboty zastępują ludzi. Żeby tego uniknąć człowiek używa narzędzi. Mimo wszystko jeszcze człowiek jest potrzebny, w związku z tym narzędzia też.

 

Co się liczy? Szacunek ludzi ulicy

   Głównym czynnikiem decydującym o zakupie tego typu przyrządów jest cena, która z czegoś wynika. Na świecie narzędzia firmy Panduit są powszechnie znane oraz nie są tanie z faktu trwałości wykonania, ale też nie są nieosiągalne – klienci, którzy dotychczas przekonali się i chwalą sobie sprawdzony towar, nie widzą sensu używać konkurencyjnych towarów. Wniosek nasuwa się sam. Jak ma być coś dobrze zrobione, to każdy chce używać właściwych instrumentów nie zależnie od tego ile miałyby kosztować. Ważne aby robiły swoją robotę.

 

   Popatrz, poniżej przedstawione są mechanizmy: zacisku opaski (element 26 na poniższym zdjęciu) i odcięcia zapasu opaski (element 14). W 1997 roku przez Pana Anurag B. Joshi z firmy Panduit Corp. (linkedin) zostały opatentowane. Opaska podawana i przytrzymywana była za pomocą mechanicznych podajników (element 26). Nożyk nadal jest elementem eksploatacyjnym, który można wymieniać we własnym zakresie – zestaw naprawczy do urządzeń GTS i PTS (KGTSBLD).
patent mechanizm opaski plastikowe nożyk odcina
   W kolejnym patencie proces zaciskania opaski  pod względem innowacyjnym był dość prosty. Wciśnięcie rączki (174) powoduje odsuwanie ramienia (123) używana przy tym siła zacisku kontrolowana za pomocą pokrętła (310). Kolejno na ramieniu (123) znajdował się uchwyt podtrzymujący opaskę (150), który zazębia się na opasce. Maksymalne wciśnięcie rączki (174) powodowało uruchomienie nożyka (360), który odcinał zapas opaski. Proste jak się wie, prawda? Znając konstrukcję i sposób działania, można w łatwy sposób określić własne potrzeby. Poniżej wspomniany udoskonalony konstrukcyjny patent z roku 1999 autora Pana Larrego Hillegondsa (LinkedIn).
patent mechanizm opaski plastikowe nożyk odcina1

   Kolejnym jakże ważnym parametrem przyrządu jest waga urządzenia, która w zależności od modelu wynosi od 294 gram do tylko 454 gram. Jest to ważne z punktu widzenia osoby obsługującej narzędzie. Elementy wewnątrz przyrządów są stalowe, przez co nie zużywają się tak bardzo jak elementy z tworzyw sztucznych w tanich chińskich zamiennikach. Z kolei osłona narzędzia wykonana jest z lekkiej utwardzanej żywicy. Ciekawostka! Współczesne telefony ważą średnio tylko od 150g do 200g i już coraz rzadziej 300g. Waga przyrządu zbliżona do wagi telefonu, nie wpływa na mentalność operatora przez co zmęczenie ręki jest o 40% mniejsze w porównaniu z konkurencją, czyli zwiększa komfort i efektywność pracy. W zakładach produkcyjnych, na taśmach wiązek kablowych czy samochodowych liniach produkcyjnych wszędzie tam gdzie pracują ludzie i zużywa się duże ilości opasek. Stosuje się właśnie takie narzędzia, które podnoszą komfort operatora. Takie działanie skutkuje znacznie szybszą pracą na liniach produkcyjnych, nie bez powodu indeks GTS-E i jemu podobne sprzedają się najlepiej na rynku.

 

top
 W celu zgłębienia wiedzy na temat linii produkcyjnych wiązek kablowych, tego jak powinny wyglądać i co jest na nich wykorzystywane. Warto zapoznać się z wcześniejszym moim artykułem, z którego dowiesz się więcej o systemie uchwytów Quick-Build firmy Panduit, który usprawnia czynności związane z tworzeniem wiązek kablowych na liniach produkcyjnych (Quick-Build™ i życie staje się prostsze).

Narzędzia ręczne kauczukowe
Jak już wspominałem wyżej najczęściej kupowanym narzędziem firmy Panduit jest model GTS-E z faktu obsługiwanych rozmiarów oraz wagi.
  • GTS-E – narzędzie posiada innowacyjny kształt z kauczukową obudową, odporną na uderzenia. Wąski przód narzędzia pozwala dotrzeć w trudno dostępne miejsca. Uchwyt przytrzymujący opaskę. Antypoślizgową, miekką kauczukową rączkę, dostosowaną do rozmiaru dłoni (są modele przystosowane do mniejszych dłoni STS2 i mniejszych instalacji). Stosowane do opasek plastikowych o rozmiarach: Subminiature, Miniature, Intermediate, Standard. Waga 294.5g. Standardowa ilość w opakowaniu 1szt. Dokumentacja techniczna.
gts-e
 Główne różnice w porównaniu z wcześniejszym modelem nadal dostępnym w sprzedaży jest antypoślizgowa rączka wykonana z kauczuku (wcześniej była plastikowa, przez co często się ścierała i później wyślizgiwała z rąk). Dodatkowo zmianie uległ design to powoduje, że narzędzie jest bardziej dopasowane do dłoni operatora. Na poniższym zdjęciu możesz sam ocenić dwie wersje tego samego narzędzia: starsza wersja GTS oraz najnowsza GTS-E. Które jest lepsze? decyzję pozostawiam zaopatrzeniowcom.
gts vs gts-e
 Ustawienie żądanych parametrów jest i było równie proste jak sam fakt docisku opaski. Na narzędziach przyklejona jest czytelna etykieta z parametrami dotyczącymi: szerokości opaski oraz siły zacisku. Wymagane wartości ustawia się za pomocą pokrętła usytuowanego z tyłu przyrządu. W starych modelach wystarczyło przekręcić pokrętło, z kolei w nowych modelach pokrętło trzeba odciągnąć, ustawić wymagany parametr i puścić. Ten manewr rozwiązany jest lepiej w nowym modelu gdyż trzeba odciągnąć pokrętło – samo się nie zrobi. Dlatego lepiej, bo samoczynnie się nie zmieni.
etykieta
parametry tools
  • element blokujący pokrętła regulującego siłę nacisku – KGTS-ETL. Manual. Tak naprawdę jest to blokada blokady. Wspomaga blokadę podstawową w pokrętle gdyż jest tylko na zatrzask, a nie tak jak w starym modelu było przykręcane na śrubkę.
blokada
Firma Panduit 9 maja 2018r. na targach Electrical Wire Processing Technology Expo 2018 – Both 1825 (link) zaprezentowała nową blokadę przykręcaną na śrubkę do narzędzi instalacyjnych do opasek kablowych GTS-E i GTH-E. Symbol KGTS-ETLS.
nowa blokada na narzędzia ręczne
  • zestaw naprawczy nożyka – KGTSBLD. Manual. Nożyk jest elementem, który się zużywa i jak każdy nóż powinien być zmieniany co jakiś czas, aby proces odcinania odbywał się prawidłowo.
zestaw naprawczy
 Po za powyższym modelem jest również wersja czerwona, która różni się wagą, obsługiwanymi przekrojami, krótszą i grubszą szyjką. Narzędzie służy do bardziej zaawansowanych prac np. kolorowe opaski z grupy IT9115-CUV zaopatrujące place zabaw dla dzieci (wysokie słupy i mocowane na opaski kolorowe siatki, pokrowce, etc.)
  • GTH-E – przystosowane do opasek o rozmiarach: Standard, Heavy-Standard, Light-Heavy i Heavy. Waga 337.1g. Dokumentacja techniczna.
gth-e
Po za wyżej wspomnianymi narzędziami są też inne modele, które mają podobny sens działania. Różnią się jednak tym, że są:
  • ręczne plastikowe do małych instalacji (STS2, STH2);

STS2

Firma Panduit 9 maja 2018r. na targach Electrical Wire Processing Technology Expo 2018 – Both 1825 (link) zaprezentowała nową wersję narzędzia instalacyjnego GS2B-E do opasek kablowych.

GS2B-E

pts

  • system PAT 4.0 – narzędzie ręczne automatyczne służące do zaciskania opasek. W skład zestawu wchodzą:
    • opaski podawane ze szpuli PLT1M-XMR. Wymiar: długość 102.0mm (4.0”) / szerokość 2.5mm (0.1”). Przekrój: Miniature. Tworzywo: Nylon 6.6. Kolor: Natural. Standardowa ilość w opakowaniu 10000szt. (2 szpule po 5000szt.) Dokumentacja techniczna.
    • głowica zaciskowa PAT1M4.0. Maksymalna średnica wiązki: 21.0mm (0.82”). Standardowa ilość w opakowaniu 1szt. Dokumentacja techniczna.
    • podajnik PDM4.0. Stacjonarny podajnik z dotykowym wyświetlaczem LCD, posiada wbudowane menu pomocy w przypadku wystąpienia błędu sygnalizuje alarm dźwiękowy. System działa z minimalnym ciśnieniem 65 psig niesmarowanego, filtrowanego powietrza. Automatycznie dostosowuje się się do zasilania 100-240 VAC/50 lub 60 Hz. Standardowa ilość  w opakowaniu 1szt. Dokumentacja techniczna.
    • przewód przesyłowy PHM1, PHM2, PHM3 i PHM4. Przenosi opaskę kablową oraz sygnał z podajnika do głowicy zaciskowej. Długość: 1.0m (3.3′), 2.0m (6.5’), 3.0m (9.8′), 4.0m (13.12′). Standardowa ilość w opakowaniu 1szt. Dokumentacja techniczna.
    • zestaw regulujący HS3X w skład którego wchodzą: PL283N1 (filtr/regulator sterujący przepływem powietrza) i PDH10-37 (przewód powietrza (3m) łączący filtr/regulator z podajnikiem). Standardowa ilość w opakowaniu 1kpl.

pat 4.0

    System do zaciskania opasek PAT 4.0 można zintegrować z robotem za pomocą pneumatycznego siłownika PATM-RK do wyzwalania automatycznego zaciskania opasek. Poniżej krótki film prezentujący wykorzystanie robota przy zaciskaniu opasek na wiązce kablowej umieszczonej na elementach systemu QuickBuild. (więcej informacji w artykule na ten temat).

 

 

Przydatne linki:
  • Broszura dotycząca narzędzi ręcznych (link);
  • Allegro: GTS-E (link);
  • nasz sklep MK Elektronik: GTS-E (link), GTS (link), GTH (link).

Film instruktażowy:

 

Czy warto używać towarów z właściwościami Halogen-free?

  • Co tak naprawdę decyduje o stosowaniu produktów bezhalogenowych?
  • Co kryje się za szkodliwością dymu korozyjnego?
  • Skąd wiadomo że towar jest bezhalogenowy?
  • Standardy międzynarodowych oznaczeń Halogen-Free.
  • Czy warto stosować towary z właściwościami Halogen-Free?

   Zanim odpowiem na to jakże ciekawe pytanie. Początkowo zapoznamy się z terminem halogenów. „Halogeny” są zespołem pięciu pierwiastków chemicznych:

  • fluor (F) – w temperaturze pokojowej, występuje w postaci blado żółto-brązowego gazu.
  • chlor (Cl) – w temperaturze pokojowej jest jasnozielonym gazem.
  • brom (Br) – w temperaturze pokojowej jest cieczą czerwonawo-brązową, rudą;
  • jod (I) – w temperaturze pokojowej jest ciałem stałym w kolorze stalowo-szarym, po reakcji chemicznej w kolorze fioletowym;
  • astat (At) – czarne ciało stałe. Silnie promieniotwórczy, ciężko zdobyć.

   Należą one do 17-tej grupy chemicznej układu okresowego fluorowców (chlorowców). Określenie zostało wprowadzone w 1842 roku przez szwedzkiego chemika barona Jönsa Jacoba Berzeliusa, nazwa pochodzi od greckich słów „sól” i „tworzyć„.

probówki

Co tak naprawdę decyduje o stosowaniu produktów bezhalogenowych?

  Toksyczność halogenów jest potencjalnie niebezpieczna dla ludzi, jeśli istnieje problem z ewakuacją z zagrożonego obszaru. Toksyczność dymu budzi największe obawy w zamkniętych pomieszczeniach, gdzie możliwości ucieczki są ograniczone, na przykład: wagoniki kolejki górskiej, statki morskie, platformy naftowe i gazowe.

  Istnieje możliwość wystąpienia korozji styków szczególnie w centrach danych oraz rozdzielniach telefonicznych z dużą ilością drogiej elektroniki. Jedno z wielu rozwiązań, które mogą zmniejszyć problem toksycznego dymu jest wybór produktów halogenowych, które trudno się zapalają lub zaczynają się palić w bardzo wysokiej temperaturze, zmniejszając ryzyko uwolnienia toksycznych lub żrących gazów.

 Inną opcją jest wybór produktów bezhalogenowych (ang. Halogen-Free), które mogą się zapalić bez wydzielania toksycznych lub żrących gazów.

substancje żrące i toksyczne

 Przepisy dotyczące bezpieczeństwa pożarowego, określa certyfikat UL a dokładniej palność (ang. flammability), rozprzestrzenianie się płomienia, toksyczność dymu (wcześniej już omawiałem te zagadnienia w artykule dotyczącym Certyfikatu UL). Istotną cechą jest to czy produkt podtrzymuje, rozprzestrzenianie się ognia oraz jego łatwopalność. Są to czynniki decydujące o życiu ludzi znajdujących się w zamkniętych pomieszczeniach, gdzie ruch z dala od źródła ognia może być ograniczony, m.in. pociągi, platformy wiertnicze do wydobywania ropy i gazu oraz przemysł stoczniowy. O stopniu zagrożenia ludzi znajdujących się w strefie pożaru decyduje pięć podstawowych czynników:

  • dym;
  • toksyczne produkty spalania;
  • niedostatek tlenu;
  • wysoka temperatura gazów pożarowych;
  • oddziaływanie płomieni.

dym

Co kryje się za szkodliwością dymu korozyjnego?

  Dym jest zawiesiną z bardzo drobnych cząstek stałych w gazie. Dym obok mgły jest jedną z postaci gazozolu (jeżeli rozproszonymi cząstkami są cząstki ciekłe, to gazozol jest mgłą, jeśli są to cząstki stałe, to gazozol jest dymem). Dym zazwyczaj jest produktem ubocznym spalania i często towarzyszy ogniowi. W miastach wraz z mgłą może tworzyć smog. Szczegółowe zagadnienia związane z dymem można przeczytać w dokumencie w języku polskim pt. „Metody badania właściwości dymotwórczych” (plik) Z pliku dowiemy się czym jest dym, jak bada się jego gęstość i jak się tworzy.

  Temat dymu korozyjnego był poruszany na sympozjum pt.: „Comparison of Communications LAN Cable Smoke Corrosivity” w San Francisco w 1997r. przez m.in firmę Underwriters Laboratories (plik). Od tamtej pory zagadnienie było rzadko poruszane i szczątkowo omawiane jednak brak jest informacji potwierdzających: „Jak dym – powstały ze spalania się elementów halogenowych w rozdzielni – wpływa na elektronikę w szafach rozdzielczych lub serwerowych znajdujących się w sąsiadujących pomieszczeniach?„.  Z tego co udało mi się ustalić pytając specjalistów na różnych grupach tematycznych:

  • osady powstałe z dymu są osadami węglowymi połączone z wodą, a węgiel i związki węgla są przewodnikami co powoduje przyklejanie się, korozję styków i uszkodzenie elektroniki (informacja z grupy „Elektryk płakał jak do rozdzielnicy zajrzał);
  • „Kondensat prawie każdego dymu jest korozyjny. Nie sam dym, a woda wraz z rozpuszczonymi produktami reakcji gorzenia. Na wszystkim co zimniejsze od mniej-więcej 55 stopni, będzie ta czy inna ilość kondensatu w postaci mieszanki kwasów siarczystych, azotowych itd. Sama mieszanka jest często bardziej agresywna od pojedynczych komponentów w większych ilościach. Dobrym przykładem tego efektu jest korozja blach na dachach w bliskości fabryk lub szybka korozja tłumika samochodowego z katalizatorem. Proces dokładnie ten sam – „rozpuszczanie” (czyli reakcja tlenków kwasowych) w wodzie i powstawanie kwasów.” (informacja z grupy „Automatyk może więcej);

 Wniosek nasuwa się sam. Podczas spalania wytrąca się woda, która w połączeniu z osadami węglowymi przenika do wnętrza urządzeń elektronicznych i tym samym może spowodować korozję styków. Szybkość wytwarzania się dymu w dużej mierze zależy od:

  • szybkości wydzielania ciepła i szybkości spalania materiału – dlatego ważne jest aby przewody były ułożone estetycznie i równo co będzie korzystnie wpływało na równomierne rozprowadzenie temperatury (artykuł o grzebieniu do estetycznego układania przewodów);
  • dodatku do powłoki substancji opóźniających przebieg reakcji rozkładu;
  • rodzaju spalania (płomieniowe, bezpłomieniowe).

dym1

  Przy niektórych zastosowaniach istnieje obawa, że materiały halogenowe uwolnią żrące i toksyczne gazy, w kontakcie z ogniem. Żrące pierwiastki gazów mogą uszkodzić elektronikę wszędzie tam, gdzie dotrze dym. Intensywność powstawania dymu zależy od rodzaju dodatków dodawanych do materiałów organicznych, np. wypełniaczy, plastyfikatorów, środków ogniochronnych. Zdolność materiałów do wydzielania dymu w warunkach bezpłomieniowego rozkładu termicznego jest zazwyczaj większa od dymotwórczości przy spalaniu płomieniowym. Dotyczy to szczególnie tworzyw sztucznych. Dla tworzyw sztucznych obserwuje się czasami zjawisko odwrotne, np. PCV intensywniej dymią przy spalaniu płomieniowym.

Skąd wiadomo że towar jest bezhalogenowy?

  Właściwości bezhalogenowe produktu są wymogiem regulowanym przez normy. Praktycznie bez zrobienia specjalistycznych testów, cechy są trudne do określenia. Ponieważ tworzywa sztuczne są mieszaniną substancji, które mogą zawierać żywicę, środek opóźniający spalanie, barwniki i inne dodatki, aby nadać produktowi szczególne właściwości. Dlatego należy przeprowadzić niezależne testy laboratoryjne w celu określenia czy całościowy produkt można sklasyfikować jako bezhalogenowy. Wszystkie metody będą dążyć do określenia obecności i poziomu halogenów. Poniżej przedstawiam niektóre z nich.

  Metoda badania IEC60754-1 / BS6425-1 (Emisja Halogenów) – ilości fluorowodorowego gazu, innego niż kwas fluorowodorowy, ewoluują podczas spalania związku na bazie fluorowcowanych polimerów i związków zawierających chlorowcowane dodatki pobrane z konstrukcji kabli lub światłowodów. Halogeny obejmują 5 pierwiastków: Fluor, Chlor, Brom, Jod i Astat, wszystkie te elementy są z natury toksyczne. W tym teście, gdy palnik jest podgrzewany do 800°C, próbka jest umieszczana wewnątrz komory, a HCL jest absorbowany do wody wewnątrz komory zasilanej strumieniem powietrza. Woda następnie jest testowana pod względem kwasowości. Jeśli wydajność kwasu chlorowodorowego jest mniejsza niż >5%, kabel lub światłowód jest sklasyfikowany jako LSOH. Jeżeli wydajność kwasu solnego wynosi od 5%-15%, kabel jest sklasyfikowany jako LSF. Test IEC 60754-1 nie może być użyty do pomiaru dokładnej wydajności HCL jeżeli jest mniejszy niż >5%, a zatem nie można w jednoznaczny sposób stwierdzić, czy kabel jest wolny od halogenów czy nie. Aby to zrobić należy zastosować kolejny test IEC 60754-2.

  Badanie IEC 60754-2 (korozyjność) – metoda określa stopień kwasowości gazów wydzielanych podczas spalania kabli lub światłowodów pobranych z próbki kabla przez pomiar jej pH i przewodności (zawartość halogenowodorów (mg/g)). Próbkę uznaje się za zaliczoną do tego testu, jeśli wartość pH jest nie mniejsza niż 4,3 w odniesieniu do 1 litra wody, a konduktywność (przewodność) jest mniejsza niż 10 us / min. Gdy wydajność HCL (kwas solny) wynosi od 2mg/g-5mg/g, próbka kabla może przejść przez IEC 60754-1 (kwasowość (μS/mm i pH)), ale jej wartość pH może być mniejsza niż 4.3 i dlatego nie przejdzie testu IEC 60754-2. Towary uznane jako bezhalogenowe mają kwasowość na poziomie: a1 lub a2. (mowa jest o tym w moim wcześniejszym artykule dotyczącym Certyfikatu CPR).

  Metoda badania IEC 61034-1/ASTM E662 (Emisja dymu) –  test określa gęstość wydzielanego dymu (% procent przepuszczalności światła). „Test 3-metrowej kostki” mierzy wytwarzanie dymu z kabli elektrycznych podczas pożaru. Promień światła emitowany przez okno jest wyświetlany w obudowie do komórki fotoelektronicznej podłączonej do rejestratora w przeciwległym oknie. Rejestrator jest przystosowany do rejestracji od 0% dla całkowitego zaciemnienia do 100% transmisji świetlnej. Próbka kabla o długości 1 metra umieszczona jest pośrodku obudowy i jest poddawana próbie z ogniem. Minimalna transmisja światła jest rejestrowana. Wynik jest wyrażony jako procent przepuszczanego światła. Próbkę uznaje się za zaliczającą ten test (IEC 61034-1 i 2), jeśli wartość jest większa niż <60%. Wniosek: Im większa przepuszczalność światła, tym mniej dymu emitowanego podczas pożaru.

    Metoda IEC 60332-1-2 (LSZH-1) – odporność pojedynczego kabla lub światłowodu na pionowe rozprzestrzenianie się płomienia w trakcie pożaru. W badaniu stosuje się płomień o mocy 1 kW (~3400 BTU/h), który w trakcie 60 sekund oddziałuje na jeden kabel umieszczony w pionie. Po skończonym czasie zwęglenia na kablu nie mogą występować powyżej 425mm (~17.0″) od źródła płomienia oraz żadne zwęglenia nie mogą występować poniżej 65 mm (~2.5″) poniżej źródła.

   Metoda IEC 60332-3 (LSZH-3) – może być wykonywana równocześnie z poprzednią metodą. W trakcie testu sprawdza się powstawanie spadających kropelek lub cząstek w stosunku do jednego kabla lub światłowodu umieszczonego w pionie. W badaniu używa się płomienia o takiej samej mocy 1 kW w czasie 60 sekund. Kabel nie powinien uwalniać żadnych cząstek, które zapalają papier filtracyjny znajdujący się 150mm (~6.0″) poniżej źródła płomienia podczas trwania testu.

   Standard UL 1685 / UL 1581 – test określa poziom uszkodzenia oraz uwalniania dymu z kabli elektrycznych lub światłowodowych w pionowej próbie ogniowej. W celu zaliczenia tego testu kabel musi spełniać pewne kryteria: wysokość zwęglenia kabla powinna być mniejsza niż >244cm, wartość całkowicie uwolnionego dymu ma wynosić mniej niż >95m², a prędkość szczytowa uwalniania dymu nie powinna przekroczyć 0.25m²/s. Test nie bada toksyczności produktów spalania lub rozkładu i nie obejmuje wymagań konstrukcyjnych wydajności kabla.

Właściwości, potwierdzające cechy towarów bezhalogenowych:
  • Metoda testowa IEC 60754-2 (korozyjność) – niezależny test laboratoryjny;
  • Metoda UL94 preferowana wartość: V-0 – ocena palności towaru (więcej o certyfikacie UL w artykule);
  • Temperatura użytkowania ciągłego według UL Listed – co najmniej 95°C (203°F);
  • Zgodność ze standardem RoHs. oznaczenia halogen free

  Poszukując zamienników związków halogenowych warto pamiętać o produktach przyjaznych środowisku. Istotą tych działań jest identyfikacja substancji szkodliwych i/lub niebezpiecznych dla środowiska, co za tym idzie ograniczanie ich stosowania w niektórych towarach. Te zasady regulują: Europejska Dyrektywa RoHS, (od 01.07.2006r. ogranicza stosowanie w nowym sprzęcie elektronicznym wprowadzanym na teren Unii Europejskiej 6 substancji szkodliwych dla środowiska: ołów, rtęć, kadm, sześciowartościowy chrom, polibromowane bifenyle (PBB), polibromowane etery fenylowe (PBDE)) oraz Europejska Dyrektywa WEEE 2002/96/WE (ang. Waste of Electrical and Electronic Equipment) dotycząca utylizacji odpadów elektrycznych i elektronicznych. W Japonii te przepisy nadzorowane są przez JGPSSI (ang. Japan Green Procurement Survey Standardization Initiative) i zakazują aż 100 różnych substancji. Przykładowymi firmami dbającymi o swoją zieloną politykę są: Ricoh, NEC i Toshiba. (Green Public Procurement).

WEEE & rohs

 Czasami może okazać się, że produkty halogenowe spełniają tylko niektóre wymagania środowiskowe, z kolei bezhalogenowe przekraczają minimalne kryteria spełniając większość wymagań, przez co mogą stać się towarem referencyjnym do stosowania w większości wymagających środowisk.

Standardy międzynarodowych oznaczeń Halogen-Free

Obecnie w przemyśle kablowym stosuje się różnego rodzaju przewody i różnorodne powłoki. Producenci oznaczają produkty ognioodporne różnymi międzynarodowymi symbolami:

  • ogniodporne – kable ognioodporne są przeznaczone do użytku w sytuacjach pożaru, gdzie rozprzestrzenianie się płomieni wzdłuż trasy kablowej musi zostać opóźnione. Ze względu na względnie niski koszt kable ognioodporne są szeroko stosowane jako kable do przetrwania pożaru. Bez względu na to, czy kable są instalowane w pojedynczych kanałach czy w wiązkach, podczas pożaru rozprzestrzenianie się płomienia zostanie opóźnione, a pożar zostanie ograniczony do niewielkiego obszaru, zmniejszając w ten sposób zagrożenie pożarowe z powodu rozprzestrzeniania się ognia;
  • LSZH (ang. Low Smoke Zero Halogen) – kable LSZH charakteryzują się nie tylko odpornością ogniową, ale także właściwościami bezhalogenowymi, co zapewnia niską korozyjność i toksyczność. Podczas pożaru kable LSZH emitują mniej dymu i mniej kwaśnych gazów, które mogą być szkodliwe zarówno dla człowieka jak i drogiego sprzętu. W porównaniu z normalnymi kablami PCV, kable LSZH przewyższają swoją odpornością ogniową, niską korozyjnością i niską emisją dymu, jednak zwykłe kable z PVC mają lepsze właściwości mechaniczne i elektryczne; Należy również pamiętać, że tworzywo PVC wymaga silnie toksycznego materiału stabilizującego powłokę jakim jest ołów. W kanałach żebrowanych firmy Panduit można spotkać tworzywo Lead-free PVC, które charakteryzuje się tym że w składzie chemicznym nie użyto ołowiu ani innych metali ciężkich. Tego typu przewody poddawane są różnym testom: ognioodporności (IEC 60332), zawartości halogenów (IEC 60754) i emisji dymu (IEC 61034).
  • LSF (ang. Low Smoke and Fume) – kable niskoprężne (niewytwarzające wysokiego ciśnienia) cechuje je niska zawartość halogenu i niska korozyjność niskoprężnych kabli dymowych. Kable LSF zawierają również halogeny, ale ich zawartość jest znacznie mniejsza niż kabli PCV. Przewody LSF zostały zaprojektowane w celu ograniczenia rozprzestrzeniania się ognia, toksycznych gazów i dymu podczas pożaru. Kable LSF są zwykle produkowane z ognioodpornego PCW mieszanego z dodatkiem HCL i pochłaniacza dymu. Materiały te pomagają poprawić ognioodporność kabli LSF;
  • CMP (ang. plenum cable) – są to kable układane w przestrzeniach wentylacyjnych budynków. Przestrzeń ta jest obszarem, który może ułatwić cyrkulację powietrza w systemach grzewczych i klimatyzacyjnych, zapewniając dostęp do przepływu powietrza ogrzewanego / klimatyzowanego lub powrotnego. Przestrzeń między sufitem strukturalnym a sufitem podwieszanym lub pod podłogą podniesioną jest typowo uważane za plenum. Jednak niektóre konstrukcje sufitu podwieszanego tworzą szczelne zamknięcie, które nie pozwala na przepływ powietrza, a zatem nie może być uważane za przestrzeń powietrzną z plenum. Przestrzeń powietrzna jest zwykle wykorzystywana do przechowywania kabli komunikacyjnych dla sieci komputerowej i telefonicznej budynku. Jednakże zaproponowano, że rosnąca rezygnacja z kabli w przestrzeniach plenum może stanowić poważne zagrożenie w przypadku pożaru, ponieważ gdy ogień dotrze do takiej przestrzeni, przepływ powietrza obecny w tym obszarze dostarcza świeżego tlenu do płomienia i powoduje jego znaczny wzrost niż miałoby to miejsce w innym obszarze. Przewody plenum występują w powłoce ognioodpornej z polichlorku winylu (PVC) o niskim tworzeniu dymu lub fluorowanego polimeru etylenu (FEP). W USA firma regulująca normy tego rodzaju przewodów znana jest pod nazwą  National Fire Protection Association standard NFPA 90A: Standard for the Installation of Air Conditioning and Ventilating Systems. Z kolei w Kanadzie (ang. Canadian Standards) wymienione są w normie CSA FT6;
  • CMR (ang. Riser Cable) – są to kable stosowane do prowadzenia w budynkach między piętrami w obszarach nieizolacyjnych (ang. non-plenum). Wymagania ogniowe w tych przewodach nie są restrykcyjne, dlatego kabel CMP może zastąpić kabel CMR w przestrzeniach wentylacyjnych ale nie odwrotnie;
  • CM – są to kable do ogólnego zastosowania w okablowaniu budynku. Kable CM są używane w obszarach innych niż przestrzenie rozprężne i piony wentylacyjne. Kable te są odporne na rozprzestrzenianie się ognia i zgodne są z testem szczelności pionowej UL 1581.
  • CMG – podobnie jak CM są to kable ogólnego przeznaczenia. W przepisach Canadian Standards wymienione są w normie CSA FT4.

reakcja na ogień

Czy warto stosować towary z właściwościami Halogen-Free?

  Powyższe argumenty, dowodzą że warto i obrazują konsekwencje nie stosowania się do ogólnie przyjętych norm. Takie niedopatrzenie może doprowadzić do kolosalnych strat. W momencie planowania zagospodarowania budynku lub pomieszczeń w kanały żebrowane, przewody i inne materiały wymagane w kosztorysach, monterzy lub instalatorzy sugerując się niższą ceną wybierają towary słabszej jakości. Bywa i tak, że czasami w przetargu brakuje sprecyzowanej informacji dotyczącej jaki powinien być produkt odpowiedni do danej strefy.

  Na przyszłość proszę pamiętać, że różnica cenowa z czegoś właśnie wynika. Szybkość spalania, przemieszczania się ognia jak i wytwarzania dymu są współmierne z czasem jaki możemy zyskać na ochronę ludzkiego życia oraz sprzętu. Nie po to inwestycje pochłaniają ogromne sumy pieniężne żeby oszczędzać na tego typu towarach. Dlatego ważne jest, aby zrozumieć charakterystykę łatwopalności i zastosowania kabli w infrastrukturze sieci.

  Pojęciem ściśle związanym z okablowaniem strukturalnym jest NVP (ang. Nominal Velocity of Propagation) jest to stosunek prędkości sygnałów podróżujących w kablu do prędkości światła w próżni. Jest to kluczowa wartość przy wykonywaniu testów i pomiarów. Na podstawie tej wartości wyznaczana jest długość kabla. Wiedza na temat długości zamontowanego kabla jest wymagana by zapewnić zgodność instalacji ze specyfikacją, a co za tym idzie, zagwarantować sprostanie określonym aplikacjom. NVP może zostać wyznaczone przy użyciu mierników, takich jak np. Fluke DSX-600 lub jego starszy model DTX-1800.

   Stosunek ten może być wyrażony w procentach bądź jako wartość dziesiętna z zakresu 0-1. Typową wartość NVP dla kabla UTP (nieekranowanego) wynosi 69% (lub 0.69). W kablach firmy Panduit: PUR6004BU-UY i PUP6004BU-UY, NVP wynosi odpowiednio dla CMR – 70%, CMP – 72%.

Przydatne linki dot. towarów z właściwościami Halogen-Free firmy Panduit:

panduit Copper Cable

Grzebień do układania wiązek kabli sieciowych

   Kto z branży informatycznej nie miał do czynienia z szafą serwerową (ang. rack post lub cabinet), która wołała o pomstę do nieba i strach było się do niej dotknąć żeby czegoś nie odłączyć – niech pierwszy rzuci kamień. Wystające przewody przerażają, można sądzić ze osoba, która to robiła nie do końca wiedziała co robi lub miała mało czasu aby to zmontować w miarę estetycznie. Z tym problemem stykają się głównie specjaliści IT oraz osoby wykonujące pomiary sieci w pomieszczeniach serwerowych, w których trzeba znaleźć odpowiednie gniazdo w szafie lub przepiąć przewód sieciowy w inne miejsce. W praktyce jest tak, że informatycy w firmach zmieniają się, przychodzą nowi i zastają takie kwiatki – nieoznakowane przewody totalny brak estetyki. Pytania dotyczące tego stanu rzeczy nasuwają się same: brak czasu, środków, wizji czy narzędzi? Nie zawsze to musi się tak kończyć.

1
Nic dodać nic ująć
page_unsubscribed

   Centra danych i instalacje sieciowe wymagają trasowania (ang. routing – wyznaczenie jak najlepszej trasy dla pakietu danych w sieciach teleinformatycznych) tysięcy ciężkich kabli do przesyłania danych, takich jak kabel kat. 5e, 6a czy 7 do różnych lokalizacji w centrach danych i poza nimi. Ponieważ schematy okablowania centrów danych są bardzo skomplikowane, instalacja kabli musi być wykonana w niezwykle zorganizowany sposób.

   W większości przypadków kable te są zorganizowane w wiązki, dwunastu lub dwudziestu czterech kabli. Co więcej, te wiązki kabli są mocowane za pomocą opasek kablowych z tworzyw sztucznych lub coraz częściej w postaci opasek z rzepem. Ze względu na ograniczenia przestrzenne, wymagania organizacyjne i względy estetyczne, instalatorzy bardzo uważają, aby żaden z kabli nie krzyżował się podczas tworzenia tych pakietów. Ten proces organizowania kabli jest trudny i czasochłonny, zwłaszcza gdy jest wykonywany ręcznie, ponieważ każdy kabel musi zostać oddzielnie położony, aby pozostawał w swojej pozycji na wybranej długości wiązki.

Wizja sukcesu

   Całe szczęście ktoś wpadł na genialny pomysł stworzenia narzędzia do „czesania”, prostowania kabli. W 2001r. firma Adobe Communications zajmująca się wykonywaniem instalacji elektrycznych i budowlanych na niskich napięciach, wymyśliła „Wire Comb” (patent).

  Jednak ten jednoczęściowy grzebień do przewodów nie był pozbawiony wad. Przegrody dostosowane były jedynie do jednego przekroju przewodu, posiadały ostre nie profilowane krawędzie na grzebieniu, zdejmowanie osłony powodowało to, że przewody same wypadały z grzebienia. Wady sprawiały, że ​​modyfikacje instalacji przewodów były niepraktyczne i kosztowne.

   Te niedoskonałości zauważyło czterech wizjonerów z firmy Panduit, którzy w dniu 23 lipca 2007r opracowali udoskonalony prototyp grzebienia oraz zgłosili patent nr 60/951,317 pt. „Network Cable Bundling Tool” (patent): Michael J. Vermeer, Richard A.Marcus, Robert J. Krisel, David W. West – Panowie pracują w firmie Panduit już dość długo.

   Zanim organizer do kabli otrzymał finalny współczesny wygląd przeszedł transformację (co można zaobserwować na ilustracjach).

US07959113-20110614-D00000
US07959113-20110614-D00004

   Na zdjęciu przedstawiono narzędzie do estetycznego prostowania i łączenia w wiązkę kabli sieciowych. Główne części składowe: łącznik wewnętrzny, łącznik wewnętrzny zawierający skrzydełka (wspierające utrzymanie jednolitej wiązki w kształt sześciokątnego stożka), cylindryczna osłona zewnętrzna z elementami zazębiającymi (ułatwiającymi składanie w całość) oraz grzebień.

finalny_wyglad

   Dzisiaj narzędzie ma uproszczoną konstrukcję i nie posiada dodatkowego łącznika wewnętrznego ze skrzydełkami, za to są dwa grzebienie z przegrodami na minimum 24 żyły przewodu każdy, przystosowane do różnych przekrojów przewodu:

  • zielony obsługuje przekroje od 4.6mm (0.18″) do 6.3mm (0.25″) – kategorii 5e UTP oraz kat. 6 UTP;
  • żółty 5.9mm (0.23″) do 7.9mm (0.31″) –  kategorii 6 ulepszonej (np. Panduit TX6500™), 10Gig™ kat. 6A (np. TX6A™) oraz wszystkich przewodów ekranowanych.

   Dodatkowo cylindryczna osłona zewnętrzna z elementami zazębiającymi ułatwiająca szybsze złożenie obejmy oraz taśma rzepowa z klamerką Tak-Ty Hook & Loop Cinch Tie (HLC3S-X0) utrzymująca konstrukcję obejmy w całości. Uporządkowane przewody zostają uformowane w kształt wielokąta.

Zalety innowacyjnej konstrukcji:

  • wyżłobienia w przegrodach grzebienia;
  • zaokrąglone krawędzie, zabezpieczają przewód przed uszkodzeniem nawet przy silnym przeciąganiu kabla/przewodu sieciowego;
  • wykonane z tworzywa sztucznego Nylon 6.6 (wysoka trwałość i wytrzymałość);
  • swobodne ułożenie minimalnie 24 żył przewodu;
  • możliwość układania dwóch różnych zakresów przekroju kabla w jednej chwili;
  • końcowa konstrukcja przewodów w kształcie dziesięciokątnego stożka.

Zestawienia zdjęć w internecie pod frazą „koszmar informatyka„, „serwerownie” obrazują to, że świadomość i chęci instalatorów są nadal niewielkie.

Niebo perfekcjonistów

   Odpowiednie usytuowanie przewodów procentuje późniejszą bezawaryjną transmisją danych. Nie potrzeba wybitnych umiejętności aby osiągnąć perfekcjonizm w „czesaniu” przewodów wystarczą odpowiednie narzędzia i wizja sukcesu.

   Układając równo i estetycznie przewody zyskuje się przede wszystkim:

  • poprawę transmisji danych;
  • zmniejszoną temperaturę przez równomierne jej rozprowadzenie;
  • oszczędność czasu późniejszych zmian;
  • funkcjonalność połączoną z estetyką i praktycznością;
  • łatwiejsze modyfikacje.

     Od momentu napisania tego artykułu minęły już 2 lata narzędzie, cieszy się coraz większą popularnością wśród instalatorów. Według opinii pracownicy firm, którzy spróbowali układać przewody przy użyciu tego grzebienia, obecnie nie wyobrażają sobie wykonywania tej czynności bez niego. Za każdym razem gdy wysyłam kolejne narzędzie do klienta – daje mi to ogromną satysfakcję, że mam wpływ na jakość oferowanych przez Państwa usług i jestem wdzięczny za przeczytanie mojego artykułu. Bardzo się cieszę, że już tyle polskich firm mi zaufało i stosują narzędzie firmy Panduit. W dowód wdzięczności od pewnego czasu do każdego narzędzia dołączam: czarną materiałową torbę z logiem firmy Panduit (wysyłka do wyczerpania zapasów), ostatnio zastanawiam się również nad próbkami sieciowymi. Pamiętajmy: jakość nie jakoś.

 

Przydatne linki:

  • Broszura produktu: D-CTCB48–WW-ENG;
  • Strona produktu w sklepie MK Elektronik: CBOT24K.
  • Strona produktu w Panduit: CBOT24K.
  • Allegro: CBOT24K.
  • Film instruktażowy.

Dane przedstawione w artykule odpowiadają stanowi mojej wiedzy i mają na celu poinformować o naszych wyrobach i możliwości ich zastosowania.

Certyfikat CPR – po co, komu i na co?

  • Na początku „trochę” historii
  • Certyfikat CPR (ang. Construction Products Regulations)
  • EURO klasyfikacja, Euroklasa (ang. EuroClass)
  • Oznakowanie

 

 Firma Panduit jak każde przedsiębiorstwo posiadające w swoim asortymencie przewody skrętkowe jak i światłowody, musi posiadać również certyfikat CPR. Oznaczone to jest w odpowiedni sposób na etykiecie, na kartonie lub szpuli, oraz na powłoce kabla:

  • na poniższej etykiecie przewodu PUL6AM04WH-CEG z prawej strony począwszy od góry: oznaczenie normy europejskiej CE,  numer deklaracji DoP PAN-DOP-CC006, na dole oznaczenie klasy reakcji na ogień „Reaction fire„: Dca-s2,d2,a1.
  • na powłoce kabla: model PUL6AM04, Euroklasa Dca, rodzaj kabla U/UTP LSZH, norma klasyfikacji IEC 60332-1.

Na poniższym filmie można zobaczyć jak spalają się kable w Euroklasie Dca, a jak w B2ca . Przypominam, że w symbolu kabla firmy Panduit trzecią literką odpowiadającą za tą Euroklasę jest W (PUW6C04).

Oznaczenie trzeciej litery w symbolu Panduit

Odpowiadająca Euro Klasa
L lub Z Eca lub Dca
Y Cca
W B2ca

Broszurka z Panduit odnośnie certyfikatu CPR. Specyfikacja europejskich przewodów dopuszczonych do sprzedaży w Panduit (np. PUY6C04WH-CE ma klasę Ccas1a-d1-a, PSW7004WH-HED ma B2ca-s1a-d1a).

WP_20171122_002

Na początku „trochę” historii

 W dniu 21 grudnia 1988r. powstała dyrektywa Rady 89/106/EWG, dotycząca Wyrobów Budowlanych CPD (ang. Continuing Professional Development). Dyrektywa budowlana 89/106/EWG wprowadziła pojęcie „wyrobu budowlanego” w skrócie mówiąca o trwałym związaniu wyrobu z budynkiem lub budowlą inżynierską („wyrób budowlany” oznacza każdy wyrób lub zestaw wyprodukowany i wprowadzony do obrotu w celu trwałego wbudowania w obiektach budowlanych lub ich częściach, którego właściwości wpływają na właściwości użytkowe obiektów budowlanych w stosunku do podstawowych wymagań dotyczących obiektów budowlanych). Dyrektywa Budowlana 89/106/EWG podawała czas funkcjonowania obiektów budowlanych od chwili wybuchu pożaru. Czas ten jest potrzebny na ewakuację ludzi, przeprowadzenie akcji ratowniczej, bezpieczne odłączenie urządzeń według ustalonych procedur, powstrzymanie rozprzestrzeniania się pożaru. W tym czasie działać muszą również urządzenia i kable (elementy infrastruktury obiektu) odpowiedzialne za podtrzymanie tych funkcji.

 W 2006r. kable energetyczne i komunikacyjne stosowane w budownictwie zostały zaakceptowane jako wyroby budowlane oraz określono Euroklasyfikację dotyczącą klas odporności kabli na działanie ognia (2006/751/EC). Dyrektywa obecnie jest nieaktualna, gdyż została zastąpiona rozporządzeniem kwalifikacyjnym z 9 marca 2011r. 305/2011 CPR, dotycząca wyrobów budowlanych z wyjątkiem kabli.

 W dniu 1 lipca 2016r. opublikowano klasyfikację EU/364/2016 dotycząca reakcji na działanie ognia wszystkich wyrobów budowlanych (w tym kabli). Zmieniony schemat klasyfikacji kabli różni się od tego wydanego w 2006r. (wtedy były klasy: A1, A2, B, C, D, E, F, teraz są: A, B1, B2, C, D, E, F).

Certyfikat CPR (ang. Construction Products Regulations)

CPR

 Dnia 1 lipca 2017r. uprawomocniła się norma PN-EN 50575:2015-03 pt. Kable i przewody elektroenergetyczne, sterownicze i telekomunikacyjne – kable i przewody do zastosowań ogólnych w obiektach budowlanych o określonej klasie odporności pożarowej. W normie CPR określono wymagania dotyczące właściwości w warunkach działania ognia, metody badań i oceny kabli zasilających, sterowniczych i telekomunikacyjnych stosowanych w obiektach budowlanych o określonej klasie odporności pożarowej.

 Konsekwencją wdrożenia dyrektywy CPR jest obowiązek ciążący na producentach okablowania do wystawienia deklaracji właściwości użytkowych DoP (ang. Declaration of Performance) lub krajowej deklaracji własności użytkowej KDWU oraz znakowania wyrobów przeznaczonych do stosowania w budownictwie znakiem CE wg. wymagań z wyżej wymienionego rozporządzenia 305/2011. W przypadku braku europejskiej normy zharmonizowanej lub w przypadku nie wystąpienia o dokument ETA (Europejska Aprobata Techniczna) dyrektywa dopuszcza rozwiązanie krajowe i w tym przypadku na wyrób nanosi się znak B (znak budowlany B). Znak B nanosi się na podstawie zgodności z normą krajową (norma krajowa nie może mieć statusu normy wycofanej) lub krajową aprobatą techniczną (krajowa aprobata techniczna wystawiana jest na okres 5 lat). Ocena zgodności jest możliwa pod warunkiem uprzedniego uzyskania aprobaty technicznej (oznakowanie znakiem budowlanym B). W praktyce producent przed wystawieniem DoP musi przebadać i sklasyfikować produkowane kable wg. normy EN13501-6

ce i b

W Polsce ocena zgodności kabli stosowanych w instalacjach przeciwpożarowych z wymaganą klasą reakcji na ogień przedstawia się następująco i dotyczy paru etapów:

  • badanie;
  • klasyfikacja wg normy PN-EN 13501-6 (polska wersja normy europejskiej);
  • krajowa aprobata techniczna;
  • certyfikat;
  • oznakowanie;
  • wystawienie Krajowej Deklaracji DoP;
  • świadectwo dopuszczenia.

W przypadku zastosowania kabla, który nie został poddany stosownej procedurze zgodności odpowiada zazwyczaj kierownik robót/instalator.

 Ponieważ normę CPR stosuje się wyłącznie do kabli zasilających i komunikacyjnych zainstalowanych na stałe w budynkach, kable krosowe i obszaru roboczego są wyłączone z zakresu niniejszej regulacji. Ponadto wszystkie kable wyprodukowane przed 1 lipca 2017 r. nie muszą mieć wskazanej europejskiej klasyfikacji CPR i mogą być wprowadzane na rynek i być zainstalowane w dowolnym momencie.

EURO klasyfikacja, Euroklasa (ang. EuroClass)

 Istnieje 7 podstawowych Euroklas: Aca, B1ca, B2ca, Cca, Dca, Eca i Fca, przy czym Aca ma najwyższy poziom, a Fca ma najniższy poziom. Euroklasy odnoszą się do kilku norm dotyczących testów pożarowych – w szczególności EN 50399, EN 60332-1-2 i EN ISO 1716. Kable zgodne z Euroklasą Eca spełniają minimalne wymogi normy EN 60332-1-2.

euro

Klasa reakcji na ogień według PN-EN 13501-6 – oznaczenia materiałów budowlanych informujące o zachowaniu materiału w trakcie pożaru. Oznaczenie składa się z czterech elementów: – klasy podstawowej i trzech klas uzupełniających, określających wytwarzanie dymu, płonących kropel oraz kwasowość.

Klasa podstawowa wskazuje czy i w jaki sposób materiał/powłoka przyczynia się do rozwoju pożaru, tzn. jak szybko się pali, ile energii przy tym wydziela, jak łatwo ulega zapaleniu oraz jak wpływa na rozprzestrzenianie się płomienia.

klasa podstawowa1

Kryteria dodatkowe dotyczą Euroklas: B1ca, B2ca, Cca, Dca.

Emisja dymu (ang. smoke production) to kryterium dotyczy wyrobów z klas podstawowych. Wydzielanie dużych ilości gęstego dymu przez palące się przewody i kable utrudnia lub niekiedy wręcz uniemożliwia ewakuację i prowadzenie akcji ratowniczo-gaśniczej. Metoda badania ilości wydzielanych dymów polega na pomiarze absorpcji światła przez dym w specjalnej kabinie o objętości 3,5 m3[6, 9]. Układ pomiarowy rejestruje przepuszczalność światła w kabinie. Wynik próby uznaje się za pozytywny, gdy przepuszczalność światła przekracza 70% dla pojedynczego kabla lub 60% dla grupy kabli (źródło: Informator techniczny, Technokabel 2007). W niektórych obiektach budowlanych dopuszcza się stosowanie wyłącznie kabli o niskiej emisyjności dymu, oznaczonych LSHF (Low Smoke Halogen Free). Dodatkową cechą kabli bezhalogenowych i o niskiej emisyjności dymów może być, i często jest, niewielkie rozprzestrzenianie płomienia. Kable takie oznacza się HFFR (Halogen Free i Flame Retardant).

palność
  • s1 – prawie bez dymu, niewielkie ilości dymu, wyroby bezhalogenowe
  • s1a – spełnione kryterium s1 dodatkowo wartość przepuszczalności światła według normy EN 61034-2> 80%
  • s1b – spełnione kryterium s1 dodatkowo wartość przepuszczalności światła według normy EN 61034> 60% <80%
  • s2 – średnia emisja dymu, średnie ilości dymu, wyroby bezhalogenowe
  • s3 – intensywna emisja dymu, wyroby z gumy/PVC

Topliwość (ang. flaming droplets) oznacza możliwość wytwarzania płonących kropel. Klasa ta dotyczy wyrobów z klas podstawowych B1ca, B2ca, Cca, Dca oraz w ograniczonym zakresie Eca i określa liczbę oraz charakter wytwarzanych pod wpływem pożaru płonących kropli lub cząsteczek mogących powodować rozprzestrzenianie ognia i poparzenia.

kapanie

  • d0 – brak płonących kropel, wyroby bezhalogenowe;
  • d1 – niewiele płonących kropli/cząsteczek (podobne do iskier z płonącego drewna), wyroby z PVC;
  • d2 – wiele płonących kropli/cząsteczek, które mogą powodować poparzenia skóry lub rozprzestrzenianie się pożaru, wyroby polietylenowe.

Kwasowość (ang. acidity) wyrażana w pH i konduktywność (przewodnictwo prądu (ang. conductivity)) wyrażana w μS/mm (mikro simens)  – oznacza, że podczas spalania elementów kabli występuje możliwość wydzielania gazów. Gazy są wynikiem rozkładu materiałów polimerowych. Najgroźniejsze z nich to związki chloru, fluoru i bromu, wchodzące w skład tworzyw sztucznych wykorzystywanych do wytłaczania izolacji, wypełnienia i do powłok kabli oraz przewodów elektroenergetycznych. Najczęściej spotykanym gazem jest chlorowodór, który wydziela się przy spalaniu polichlorku winylu (PVC). Chlorowodór już w małym stężeniu jest szkodliwy dla ludzi – jest żrący i może utrudniać oddychanie (źródło: Sosnowski I.: „Metody badań palności kabli, Elektrosystemy IV”, s. 62-65, 2009). W połączeniu z wilgocią lub wodą z akcji gaśniczej tworzy kwas solny, który powoduje poparzenia skóry ludzi oraz korozję infrastruktury metalowej obiektów budowlanych w obrębie strefy pożaru. Szczególnie niebezpieczny jest dla urządzeń elektronicznych instalowanych w centralach telefonicznych, serwerowniach czy laboratoriach badawczych.

kwasowość1

  • a1 – wynik jest pozytywny jeżeli wartość otrzymanego roztworu wynosi mniej niż 2.5 μS/mm (mikrosimensa/mm) i pH>4.3, wyroby bezhalogenowe;
  • a2 – mniej od 10 μS/mm i pH>4.3, wyroby bezhalogenowe;
  • a3 – nie spełnia powyższych kryteriów, wyroby PVC.

Wyroby budowlane po uzyskaniu właściwej sobie klasy ogniowej określanej na podstawie badań i oceny wyników wg norm wspólnych dla wszystkich krajów Unii, powinny być odpowiednio oznaczone na etykiecie.

Oznakowanie

Cały proces certyfikacji i etykietowania jest zdefiniowany w normie EN 50575. Niniejsza norma określa wymogi dotyczące ognioodporności dla kabli trwale zainstalowanych w obiektach budowlanych, umożliwiając podanie Deklaracji Charakterystyk (DoP), aby można było oznaczyć kable znakiem CE (na powłoce lub opakowaniu). Instrukcja oznakowania CE krok po kroku w różnych językach. W skrócie, etykieta powinna zawierać poniższe informacje:

  • oznakowanie CE;
  • producenta wyrobu;
  • opis produktu, klasę reakcji na ogień;
  • numer instytucji testującej;
  • deklarację właściwości użytkowych DoP.

W normie EN 50575 udostępniono trzy sposoby poświadczania zgodności w zależności od wymaganej Euroklasy (źródło)

Euro klasa System poświadczenia zgodności Komentarz
Aca B1ca B2ca Cca 1+ Badanie przeprowadzają zatwierdzone notyfikowane jednostki, które następnie wydają certyfikat stałości i właściwości użytkowych kabli, ocenę nadzoru oraz ciągłą ocenę fabrycznej kontroli produkcji
Następnie producent wydaje dokumentację typu DoP zgodnie z formatem Euroklasy, np. B2ca-s1a-d1a oraz niezbędne oznaczenia CE
Dca Eca 3 Badanie przeprowadzają zatwierdzone notyfikowane jednostki, które przedstawiają raport techniczny
Następnie producent wydaje dokumentację typu DoP zgodnie z formatem Euroklasy, np. B2ca-s1a-d1a oraz niezbędne oznaczenia CE
Fca 4 Certyfikat wystawia producent sam dla siebie

Główne zasady rozszerzonego stosowania EXAP:

  • zezwala aby ograniczona liczba kabli należąca do większej „rodziny” kabli została przetestowana ogniowo;
  • eliminuje potrzebę szerokiego testowania pojedynczych kabli z rodziny kabli, które mają takie same charakterystyki związane z pożarem;
  • wyniki testów są interpolowane do klasyfikacji – albo częściowo, albo dla całej rodziny kabli;
  • zmniejszenie kosztów certyfikacji.

Dodatkowo specyfikacja techniczna CLC/TS 50576 definiuje procedurę i zasady tak zwanego rozszerzonego stosowania (EXAP), w wyniku czego wyniki badań dla jednej konstrukcji kablowej można rozszerzyć na inne kable o podobnej konstrukcji. Opisane zasady EXAP odnoszą się do wyników badań EN 50399 zastosowanych do klasyfikacji w Euroklasach B1ca, B2ca, Cca i Dca, dodatkowych klas wytwarzania dymu s1, s2 i s3 oraz płonących kropel/cząstek.

Europejskie organizacje normalizacyjne:

  • CEN: Avenue Marnix 17, 1000 Brussels, BELGIA, Tel.+32 2 5500811; fax +32 2 5500819;
  • CENELEC: Avenue Marnix 17, 1000 Brussels, BELGIA, Tel.+32 2 5196871; fax +32 2 5196919;
  • ETSI: 650, route des Lucioles, 06921 Sophia Antipolis, FRANCJA, Tel.+33 492 944200; fax +33 493 654716.

Lista punktów kontaktowych dotycząca instytucji regulacyjnych produkty budowlane.

Jeśli dotarłeś/łaś do końca to gratuluje wytrwałości i szanuję Twój czas – żółwik:) Do następnego przeczytania.

Życie jest bezcenne

  Każdego roku miliony metrów drutu i kabla są instalowane we wszystkich typach budynków i podlegają różnym warunkom środowiskowym. Ze względu na dopuszczalne wymogi istotne jest, aby wiedzieć, które okablowanie jest odpowiednie do określonej lokalizacji. Ważne jest również to, aby móc prawidłowo zidentyfikować te miejsca. W aktualnym wydaniu przewodnika „Marking and Application Guide Wire and Cable” (link *.pdf) zawarte są wszystkie informacje niezbędne do zapewnienia zgodności instalacji. Wskazówki dotyczące oznakowania i zastosowania produktów mają na celu pomóc organom kodującym, projektantom i instalatorom w określeniu przydatności urządzeń certyfikowanych przez UL do użytku w określonej instalacji. Przewodniki opisują standardy stosowane do zbadania produktów, pożądanych kodów instalacyjnych, oznaczeń produktów i innych informacji, które można wykorzystać do weryfikacji produktu, zgodnie z jego certyfikacją. (spis przewodników strona UL)

Znaleziony obraz

Geneza i historia Underwriter Laboratories

  Laboratorium UL jest amerykańską firmą doradczą ds. bezpieczeństwa i certyfikacji z siedzibą w Northbrook w stanie Illinois. Prowadzi biura w 46 krajach – również w Polsce. Założona w 1894r. jako biuro Elektryków Ubezpieczycieli (Biuro Krajowej Rady Ochrony Pożarowej), była znana w całym stuleciu jako Underwriter Laboratories i uczestniczyła w analizie bezpieczeństwa wielu nowych technologii z tamtego wieku,  publiczne zaopatrzenie w energię elektryczną oraz opracowanie norm bezpieczeństwa urządzeń i komponentów elektrycznych. (źródło Wikipedia). Organizacja wydaje certyfikaty dotyczące palności tworzyw sztucznych UL i RU (ang. Recognized Component Mark). (wszystkie dostępne certyfikaty UL).

Edukacja, nie boli

  Norma UL 94, dotyczy bezpieczeństwa palności tworzyw sztucznych opublikowana przez Underwriters Laboratories w USA. Norma określa tendencję materiału do gaszenia lub rozprzestrzeniania płomienia, gdy próbka została zapalona.

Poniższa klasyfikacja określa parametry palności od najniższych (najmniej opóźniających palenie) do najwyższych (najbardziej):

  • HB: powolne spalanie na próbce poziomej; szybkość spalania <76 mm / min dla grubości < 3 mm lub stopień zatrzymania przed 100mm;
  • V-2: palenie zatrzymuje się w ciągu 30 sekund na próbce pionowej; krople płonących cząstek są dozwolone;
  • V-1: palenie zatrzymuje się w ciągu 30 sekund na próbce pionowej; krople cząstek dozwolone, dopóki nie są zapalone;
  • V-0: spalanie zatrzymuje się w ciągu 10 sekund na próbce pionowej;
  • 5VB: palenie zatrzymuje się w ciągu 60 sekund na próbce pionowej; nie dopuszcza się kapania; próbki płytki nazębnej mogą rozwinąć się w otwór;
  • 5VA: palenie zatrzymuje się w ciągu 60 sekund na próbce pionowej; nie dopuszcza się kapania; próbki płytki nazębnej nie mogą rozwinąć otworu.

Testy są zazwyczaj przeprowadzane na próbce o wymiarach: 12.7cm (5.0″) / 1.27cm (0.5″) i minimalnej zatwierdzonej grubości. Dla wartości 5VA i 5VB przeprowadza się testy na próbkach baru i płytki nazębnej, a źródło zapłonu płomienia jest około pięciokrotnie cięższe niż w przypadku innych materiałów.

Przebieg testu można zaobserwować na poniższym filmie. Próbki użyte do testów to tworzywa sztuczne, które w zależności od klasy palności palą się i wydzielają szkodliwe gazy lub gasną po paru sekundach:

Wybieraj mądrze

   Certyfikat UL i piękną hologramową etykietę na opakowaniu mają przykładowo dwa najczęściej sprzedawane modele przewodów firmy Panduit: NUC5C04BU-CE oraz NUC6C04BU-CE. Nie wszystkie rodzaje przewodów i kabli muszą mieć wymagane oznaczenia znaku UL. Zamiast tego może być zastosowany kompletny znak towarowy (na wszystkie elementy na przykład szafy serwerowej) przypięty do obudowy lub pudełka. Znak UL Listed jest jedynym oznaczeniem używanym do wskazania, że produkt jest na liście UL. Istnieje możliwość sprawdzenia produktu czy jest na liście UL Listed (link) lub (link).

WP_20171026_002ULlogo

Kanon certyfikacyjny spełnia wymagania regulacyjne sektora tranzytu masowego i innych zastosowań, gdzie pożar i bezpieczeństwo publiczne są krytycznie ważne, takich jak wieżowce, pociągi, autobusy, statki, platformy naftowe i gazowe oraz inne podobne środowiska.

Firma CCCA (ang. Communications Cable Connectivity Association, firma reprezentuje czołowych producentów wyrobów kablowych m.in firmę Panduit, dystrybutorów i dostawców materiałów, które mają wpływ na jakość, wydajność i społeczne potrzeby infrastruktury okablowania strukturalnego) przedstawia na poniższym filmie krótkie wprowadzenie dotyczące problemów z sfałszowanymi kablami z certyfikatem UL i pokazuje test pożarowy oraz spektakularne wyniki.

  Są zakłady produkujące kable komunikacyjne, które nie spełniają norm dotyczących bezpieczeństwa pożarowego i zabezpieczenia życia. Jednak oznakowane są wszystkimi oznaczeniami, które można znaleźć na prawidłowo skonstruowanym kablu. Firma CCCA przeprowadziła ten test pożarowy, aby poinformować, że istnieją na rynku fałszywe kable, które są zazwyczaj kupowane po cenach „okazyjnych” w internecie.

  Podwykonawcy muszą mieć świadomość, że są odpowiedzialni za bezpieczeństwo ludzi, jeśli wykorzystywany jest kabel z podrobionym certyfikatem UL nawet jeśli fałszywa specyfikacja producenta przedstawia ją jako zgodną.

   Czy warto na tym oszczędzać? Odpowiedź pozostawiam Państwu do weryfikacji.

Ku przestrodze

  Dnia 14 czerwca 2017r. spłonął wieżowiec w Londynie. Według źródeł BBC: „Przyczyną tak szybkiego palenia się konstrukcji było spięcie spowodowane niesprawną lodówką i izolacja z pianki, która wypełniała panele na fasadzie wieżowca, była ona dla mieszkańców śmiertelnym zagrożeniem. Gdy budynek zaczął płonąć, według ekspertów – do każdego mieszkania mogła dotrzeć wystarczająca ilość niebezpiecznej substancji znanej jako cyjanowodór (nieorganiczny związek chemiczny zbudowany z wodoru, węgla i azotu, będący bezbarwną, lotną i silnie trującą cieczą o zapachu gorzkich migdałów), żeby zabić wszystkich ludzi, którzy znajdowali się w środku. Panele zainstalowano w 2016 roku podczas remontu wieżowca. Były łatwopalne, nie spełniały norm i kosztowały zaledwie dwa funty mniej za metr kwadratowy, niż płyty ognioodporne„.

Wniosek nasuwa się sam, oszczędzanie na materiałach może mieć katastrofalny wpływ na bezpieczeństwo. Stosunek ceny do jakości jest nie istotny w porównaniu do bezcennego życia.

  W kolejnym artykule „Dlaczego Halogen-Free” przedstawię pięć warunków decydujących o tym, że warto wybrać towary spełniające certyfikat UL.

Quick-Build™ i życie staje się prostsze

  Krwiobiegiem i układem neuronowym wszystkich systemów elektronicznych lub elektrycznych, a więc i jedną z najważniejszych części pojazdów, urządzeń elektrycznych jest wiązka elektryczna. Przekazuje ona ogromne liczby sygnałów od czujników, umożliwia sterowanie elementami wykonawczymi w pojazdach takimi jak wtryskiwacze paliwa czy cewki zapłonowe. Ponadto, musi być możliwie lekka oraz odporna na trudne warunki pracy, takie jak paliwo, oleje lub wysoka temperatura.

Czym jest wiązka kablowa i jak powstaje
  Wiązka (ang. harness) kablowa w sensie telekomunikacyjnym jak sama nazwa wskazuje jest splotem kabli elektrycznych, zakończonych złączami (konektorami lub terminalami). Wiązki mogą być różnego rodzaju, uzależnione są od przemysłu w jakim są wykorzystywane:

  • motoryzacja – wiązki kablowe samochodów ciężarowych, osobowych oraz bolidów, przewody akumulatorowe, wiązki zapłonowe;
  • transport lotniczy i szynowy;
  • AGD;
  • stocznie – wiązki na statkach i jachtach;
  • wiązki sygnałowe do czujników;
  • OEM (ang. Original Equipment Manufacturer);
  • Automatyka;

  Montaż wiązek kablowych najczęściej odbywa się na stołach montażowych lub tablicach przeznaczonych do danego typu wiązki, które umożliwiają ułożenie przewodów zgodnie ze schematem elektrycznym.

wiązka kablowa panduit

Główni odbiorcy wiązek kablowych w Polsce to:

  • producenci aut osobowych: grupa VW, Opel, Audi, Peugeot oraz Fiat;
  • producenci autobusów: Scania, Solaris, Volvo;
  • producenci AGD: Indesit, Electrolux, Samsung/Amica, Bosch, Whirpool, LG, Philips oraz Zelmer;

Lepiej znaczy taniej

  Klient oczekuje przede wszystkim wysokiej jakości produktu. Trendem na rynku jest miniaturyzacja – im mniejsze wymiary styku, tym większa wymagana jest dokładność zaciśnięcia i precyzja narzędzi – co za tym idzie przejrzystość stołów montażowych oraz prosta obsługa. Efekt końcowy wiązki zależy również od materiałów z jakich są wykonane, klasy oraz sposobu zastosowania materiału. Czasami oszczędność kilku złotych niszczy wyrób wart setki euro.

quickbuild

 Tą wysoką jakość i przejrzystość można uzyskać stosując modułowy system uchwytów do formowania wiązek kablowych Quick-Build™ firmy Panduit.

Cechy i korzyści systemu Quick-Build™

 Zastosowanie elementów systemu skraca czas przygotowania do produkcji o 18%. Akcesoria Quick-Build™ są bardziej skuteczne niż metody mocowania na gwoździe, magnesy czy zatrzaski. Akcesoria można łatwo obracać i ustawiać tak długo, aż znajdzie się możliwość optymalnego dopasowania do trasy przewodów.

mozliwe pozycje w kołkach montażowych

W przypadku produkcji małoseryjnej o wysokim stopniu zróżnicowania (ang. Low-Volume-High-Mix LVHM) największe oszczędności osiąga się bezpośrednio na materiałach do budowy płyty montażowej – nawet 65% poniesionych kosztów. Zmniejszając liczbę zajmujących dużo miejsca płyt montażowych ze sklejki, system Quick-Build™ zapewnia oszczędność przestrzeni składowej na poziomie 50%.

stół montażowy panduit

Elementy składowe systemu Quick-Build™ firmy Panduit

  Modułowe rozwiązanie wielokrotnego użytku Quick-Build™ składa się z perforowanych płytek montażowych o wymiarach 305mm x 305mm (1.0′ x 1.0′) oraz specjalnie zaprojektowanych, dających się przesunąć akcesoriów. Materiał wykonania płytek i niektórych akcesoriów: ABS (tworzywo charakteryzuje duża udarność, twardość oraz odporność na zarysowania, nieodporne jest na działanie kwasów). Akcesoria poniżej:

elementy quickbuild.jpg

  1. Płytki perforowane (ang. square base component) QB-TILE – mocowane do sklejki za pomocą wkrętów. Wymiar: 305.0mm x 305.0mm (1.0′ x 1.0′). Tworzywo: ABS (akrylonitryl butadien styrenu). Standardowa ilość w opakowaniu 8szt. Kolor czarny. Dokumentacja techniczna. QB-TILE-GRY (kolor szary)(film z targów na początku widać szare płytki).QB-TILE
  2. Kołki montażowe (ang. Mounting Pegs) QB-MOUNT-L – kołek można dowolnie ustawiać i przenosić. Po zamontowaniu w płytce kołek należy obrócić aby zablokować. Tworzywo: Nylon 6.6. Standardowa ilość w opakowaniu 50szt. Dokumentacja techniczna. Dodatkowo tuż pod kołkiem jest podkładka z pianki QB-WASHER-Q (opakowanie 25szt.).QB-Mount-L
  3. Uchwyt na jeden gwóźdź (ang. Core Component) QB-SN2-Q – używany razem z kołkami montażowymi tworząc system modułowy. Kolor: czarny. Tworzywo: ABS. Standardowa ilość w opakowaniu 25szt. Dokumentacja techniczna. Kolorystyka: czarne, białe, szare.QB-SN1-Q
  4. Uchwyt na pięć gwoździ (ang. Five Nail Holder) QB-FN1-Q – umożliwia ustawienie do pięciu gwoździ montażowych (pozycja 10) na aranżowanej trasie kablowej. Ilość gwoździ w uchwycie może być dowolna (od 2-5). Tworzywo: ABS. Standardowa ilość w opakowaniu 25szt. Dokumentacja techniczna. Kolorystyka: czarne, białe, szare.QB-FN1-Q
  5. Uchwyt na przewód (ang. Wire End Holders) QB-WEH1012-Q – umożliwia przytrzymanie trzech przewodów o przekroju maksymalnie 5mm. Kolor żółty. Tworzywo: ABS. Standardowa ilość w opakowaniu 25szt. Dokumentacja techniczna. Kolorystyka: żółty, niebieski, czerwony.QB-WEH1012-Q
  6. Uniwersalny kołek do uchwytu elastycznego z wymiennymi opaskami  (ang. Wire Elastic Retainers) do zamontowania bez użycia śrub QB-RERBASE-X. Tworzywo: ABS. Standardowa ilość w opakowaniu 10szt. Pasuje do: RER.5, RER.75, i RER1.25. Poza tym dostępne są analogiczne modele do każdego rozmiaru uchwytu elastycznego: QB-RER.5-X, RER.75E-X, RER1.25E-X. Dokumentacja techniczna.QB-RERBASE-X
  7. Podstawka montażowa (ang. Mounting Platform) QB-BASE175-Q – montuje się w kołkach montażowych (pozycja2). Tworzywo: Nylon. Wymiar: 44.45mm x 44.45mm (1.75″ x 1.75″), QB-BASE120-Q w rozmiarze: 30.48mm x 30.48mm (1.2″ x 1.2″). Mocuje się do nich z pomocą wkrętów: uchwyty elastyczne, uchwyty wiązek, słupki narożne oraz uchwyty końcówek przewodów, które tworzą kompletny system Quick-Build™. Standardowa ilość w opakowaniu 25szt. Dokumentacja techniczna.QB-BASE175-Q
  8. Wkręty QB-S25-1000-Lsłużą do mocowania tradycyjnych akcesoriów i osprzętu testowego na podstawce montażowej (pozycja 7) Quick-Build™. Tworzywo: Stal. Standardowa ilość w opakowaniu 50szt. Specyfikacja techniczna.QB-S25-1000-L
  9. Łącznik płytek perforowanych QB-CONNłącznik przeznaczony do mocowania i dokładnego pozycjonowania płytek. Tworzywo: 20% Nylon z Aluminium wypełniony szkłem. Standardowa ilość w opakowaniu 5szt. Dokumentacja techniczna.QB-CONN
  10. Gwoździe do wiązek kablowych HBN1-T gładkie wykończenie powierzchni zapobiega uszkodzeniom koszulek przewodów. Wymiar: długość 25.4mm (1.0″), dostępne w różnych długościach: HBN.75-T, HBN1.5-T, HBN2-T, HBN2.5-T, HBN3-T, HBN4-T. Standardowa ilość w opakowaniu 200sztDokumentacja techniczna. Kompatybilne z uchwytami QB-SN (pozycja3) i QB-FN (pozycja4).  HBN1-T
  11. Słupki narożne (ang. Corner Posts) CPH.75-S8-X (wysoki) i CPL.75-S8-X (niski) stosowane w miejscach zmiany kierunku trasy wiązki. Uchylne górne ramię ułatwia wyjęcie uformowanej wiązki. Tworzywo: Nylon 6.6. Standardowa ilość w opakowaniu 10szt. Dokumentacja techniczna. Kompatybilne z QB-BASE (pozycja7).

Tradycyjne elementy systemu Quick-Build™ firmy Panduit do budowy wiązek kablowych

  • Uchwyty elastyczne – wersja z wymiennymi opaskami (ang. Elastic Retainers – Replaceable Version) RER.5-S6-X wiązka wkładana jest między elastyczną opaskę a białe ramiona uchwytu; gotową opaskę można łatwo wyjąć. Tworzywo: Nylon 6.6. Standardowa ilość w opakowaniu 10szt. Dokumentacja techniczna. Tak jak wspomniałem istnieje możliwość wymiany opaski elastycznej RER.5E-X. Instrukcja wymiany.
  • Uchwyty elastyczneniewymienne opaski (ang. Harness elastic retainer – Replaceable Version) ER.5-E4-X wiązka wkładana jest między uchylne ramiona uchwytu. Tworzywo: Nylon 6.6. Standardowa ilość w opakowaniu 10szt. Dokumentacja techniczna. W celu zachowania sztywności uchwytu producent zaleca stosowanie kołka do uchwytów elastycznych QB-RERBASE-X (pozycja6).
  • Uchwyt wiązek przewodów (ang. Bundle Retainers) BR-.5-E6-C wyprofilowany wpust ułatwia wkładanie przewodów. Kompatybilne z QB-BASE (pozycja7). Tworzywo: Nylon 6.6. Standardowa ilość w opakowaniu 10szt. Karta katalogowa.

BR.5-E6-C

  • Uchwyt wiązek przewodów (ang. Bundle Retainers) BR2-1.3-X – wyprofilowany wpust ułatwia wkładanie przewodów. Kompatybilne z QB-BASE (pozycja7). Tworzywo: Nylon 6.6 utwardzany szkłem. Standardowa ilość w opakowaniu 10szt. Dokumentacja techniczna.

BR2-1.3-X

  • Uchwyt końcówek przewodów (ang. Wire End Holder) WEH-E8-C uchwyt stosuje się do przytrzymania końców przewodów. Pomocny jest przy zaciskaniu konektorów lub terminali. Tworzywo: Nylon. Standardowa ilość w opakowaniu 100szt. Dokumentacja techniczna.
  • Uchwyty sprężynowe współpracujące z podstawkami  (ang. Spring Wire Breakout System) PBSC1-X sprężyna. Wymiar między otworami: 25.4mm (1.0″). SHH1-S8-X – podstawka do sprężyny PBSC1, wymiar: 47.0mm (1.85″). SHH3-S8-X – podstawka do sprężyny PBSC3. Kompatybilne z QB-BASE (pozycja7) służy do podtrzymywania końców przewodów w czasie wykonywania wiązki kablowej. Sprężyna i uchwyt zamawiane są oddzielnie. Dostępne są również sprężyny niezależne do montowania bezpośrednio na QB-BASE: PBSC6-X i PBSC12-X. Standardowa ilość w opakowaniu 10szt. Karta katalogowa. Instrukcja instalacji.

PBSC1-X

  • Listwa grzebieniowa (ang. Fanning Strip System) FSH40-X i FSHH-X utrzymuje przewody w określonym ustawieniu i podnosi ponad powierzchnie bazową FS156-C – białą listwę z 76 miejscami na przewody o przekroju do około 1.0m (18AWG), nie posiada ostrych krawędzi. Tworzywo: ABS. Standardowa ilość w opakowaniu 100szt. Karta katalogowa.

FSH40-X

  • Zestaw startowy (ang. Quick-Build Starter Kit) QB-KIT1 i QB-KIT2 – zestawy startowe z elementami umożliwiającymi stworzenie jednego stanowiska. Lista komponentów: QB-KIT1, QB-KIT2.

 

Poniżej film prezentujący krok po kroku możliwości systemu Quick-Build™ firmy Panduit:

A tak to wygląda po całościowym zmontowaniu elementów systemu QuickBuild z użyciem przykładowej wiązki (tablicę ze zdjęć można na żywo obejrzeć u nas w siedzibie MK Elektronik w Gdańsku):

   I na koniec prezentacja użycia robota i systemu PAT 4.0 do zaciskania opasek firmy Panduit (więcej o tym systemie w artykule dotyczącym narzędzi do opasek zaciskowych) na wiązce kablowej z wykorzystaniem systemu QuickBuild:

Dane przedstawione w artykule odpowiadają stanowi mojej wiedzy i mają na celu poinformować o naszych wyrobach i możliwości ich zastosowania.